Look! Blickschulungsbrille
Technical Documentation

Look! ET UG (haftungsbeschrankt)

September 12, 2022

Contents

1 Introduction

2 Gaze estimation

21 Calibration
2.1.1 CalibrationMarkers
212 Fittingmethods

22 Caveats

3 Recommended metrics

4 Frame
41 Safetyconsiderations

5 API
51 Definitions
5.2 Licenseagreement
53 TCP e
54 HTTP e
55 WebRTC.

6 Optional extension modules
6.1 Streaming viaWebRTCandMJPG

7 Al training

8 Demonstration of flexibility
8.1 Angleofthescenecamera
8.2 Flexibleeyecameras
8.3 Diffuseillumination,
8.4 Linescanningsensors.

1 Introduction

This document is intended for professional and scientific users. It gives
insights into technical details of the measurement process, programming
APls and data formats. It is not a required read for user intending to record
data only.

The Look! Blickschulungsbrille is a mobile, head-mounted eye-tracking
device. It is powered by modern machine vision methods that perform ap-
pearance based gaze estimation (i.e., there is no explicit pupil detection
performed nor necessary, but the image of the eye as a whole is utilized).
The glasses can be worn in combination with habitually worn eyewear and
measures even through complex lenses.

Figure 1: Our Co-founder Elena wearing the Look! Blickschulungsbrille

For real-world studies in challenging conditions, i.e., when pupil detection
is difficult (due to eyeglasses, make-up, irregularly shaped pupil or iris, reflec-
tions, and so on), neural networks clearly outperform the traditional pupil and
glint detection approach.

The Look! Blickschulungsbrille consists of three miniature USB cameras.
We call the two cameras that produce an image of the left and right eye eye
cams and the camera that points towards the scenery the wearer is facing the
scene cam. The scene cam records what is happening and the eye cams help
us determine where in the scene the wearer is looking at. They are mounted
on a 3D printed frame which also houses near-infrared filters combined with

2

eye-safe near-infrared illumination. The whole device works via a single
USB2.0 plug. You can add a presenter stick to the recording device to enable
remote control of the calibration and recording process.

Optionally, we offer a recording unit that can run the Look! Software on a
small footprint embedded system and offers a command interface as well as
a video live stream via Wifi to any connected web browser (such as a Laptop,
Tablet or Smartphone of your choice).

Scene cam

Resolution 640x480 px
Field of view wide (default) 120x70 °
Field of view pinhole 57x35°
Frame rate 30 fps
Eye cam

Resolution 320x240 px
Frame rate 30 fps

The scene cam records a cyclops view from a central perspective located
over the wearer’s nose. By default it comes with a wide angle lens, but smaller
field of view are available. Eye cameras operate at a resolution of 320x240
pixels (they can go 640x480, if required for some reason). For research use-
cases the camera firmware (of both scene and eye cameras) can be upgraded
to operate at 60 Hz, provided a device with sufficient real-time processing
capabilities is connected to handle to additional load (most modern CPUs
can do so easily).

2 Gaze estimation

At the core of the Look! software is a neural network that predicts the geo-
metric orientation of both eyeballs. We utilize Mobilenet v3 building blocks
to run them on CPU with minimal latency and CPU load. Eye features are
extracted at multiple scales and contribute to an eye model that is latently
learned by the neural network. That means we do not need to specify a corna
or eyeball site explicitly, but the model learns to make these assumptions
within the neural network.

It processes the eye images at a downsized resolution of 180x135 or
224x224 pixels. Depending on the variant of the network configured, we
process:

* Both eyes jointly as a two-channel image.

3

“y

Figure 2: Gaze error distribution in the scene cam'’s field of view. Gaze esti-
mation is stable within the central area and decreases towards the periphery,
most noticeably towards the edges.

+ Both eyes separately with the same network weights and a mirrored
right eye.

The neural network is executed via OpenVINO (https://openvino.ai)
on CPU, or as a tensorflow-lite model in case of the recording unit (optimized
and quantized for its ARM processor). The Look! recording unit runs a
quantized tensorflow-lite model, optionally on a Coral tensor processing unit,
if available (https://coral.ai). That model is, besides optimizations for
the specific architecture, identical to the Desktop version and produces very
similar results.

The glasses can also run traditional pupil detection, and research insti-
tutions can directly access the state-of-the-art algorithms implemented in
EyeRecToo (Santini et al. 2017), such as Purest pupil detection and tracking
as well as the Swirski temporal eye modeling by ellipse shape.

Accuracy of the uncalibrated eye-tracker is 5.6° on average over the whole
field of view. After calibration accuracies <1° can usually be expected. Actual
accuracy depends on tracking conditions and the quality of the calibration
performed. Down to 0.47° are achievable given ideal conditions (but unlikely
during actual in-field usage).

https://openvino.ai
https://coral.ai

2.1 Calibration
2.1.1 Calibration Markers

The Look! software detects both Aruco markers (as in EyeRecToo) and
concentric markers (see Figure 3). We recommend the use of concentric
markers as it is easier to explain to subjects where to look at. Also, the marker
is considerably smaller and can be detected very reliably. A calibration can
be started by clicking the calibrate button or long pressing one of the remote
control buttons. The calibration procedure needs to be manually finished the
same way. As marker detection is an optical process, make sure the lighting
is sufficient or turn on the lights during the calibration procedure.

r | A

B

Figure 3: Concentric calibration marker: Two high contrast concentric circles
on a credit card sized marker.

2.1.2 Fitting methods

In hybrid calibration mode (default), Look! will estimate a 2D pixel offset
(x- and y-direction) to the gaze pixel coordinates predicted by the neural
network. This simple calibration is indicated in the GUI by a yellow calibration
marker visualized on top of the detected calibration marker position. Once
the indicator turns green (after some seconds of collecting calibration data),
an extensive calibration is performed: coefficients of a polynomial of degree
2 are determined via Ridge regression.

While the calibration is running, the calibration function will continuously
update itself. It is recommended to calibrate until the marker detection and
gaze estimation indicators overlap for all desired gaze directions. Look! has
some built-in feature weighting to balance calibration samples for different
gaze directions, so there is no need to gaze in each direction for the same
amount of time.

Calibration be be applied either on the predicted gaze coordinates, on the
predicted per eye orientation vector, or on the slippage robust eye orientation
calculated as instantaneous gaze via EyeRecToo.

2.2 Caveats

Note that the field of view of our scene camera is very large. It might not
be necessary nor feasible to calibrate the complete image. However, gaze
estimation quality deteriorates dramatically when leaving the calibrated area.
It is thus important to calibrate at least that field of view which is expected to
be relevant for the task.

3 Recommended metrics

With the given resolution and sampling rate, we recommend the use of fixation
based metrics (dwell time, dwell on AQI, gaze on target,...). It is possible to
use time-based metrics (first glance on AOI, time to first fixation).

It is not possible to calculate saccadic velocity profiles (such as saccadic
peak velocity, acceleration, and such).

4 Frame

The frame is made of bio-compatible PA12 Nylon. Its flexibility allows fitting
many different head shapes. Therefore, it presses lightly against the side
of the head, fixing itself in position and avoiding slippage. The area where
the pressure is produced (near the ears) is thickened to distribute the force
on a larger area and make wearing more comfortable. When worn correctly,
the eye cameras should be at the bottom of the field of view of the wearer
and not obstruct the important central field of vision. If this is not the case,
the position of the frame on the nose or the height of the nose piece can be
adjusted.

Where the earpieces meet the front piece (where regular glasses have
a joint), stability is of special importance to avoid that the frame bends

diagonally. This would lead to a skewed positioning of the glasses on the
nose and an oddly looking fit (after calibration, the glasses are still functional
though). When adapting the frame, this area should therefore be handled
with special care (e.g., no holes drilled there).

Two NIR-LEDs (QBLP630-IR3) are placed on each eye camera. The LEDs
are connected to pins on the camera chip for power supply, so no extensive
wiring is required. The NIR illumination used is comparatively weak - in fact
often much weaker than natural sunlight. That is because we are working
with methods that do not require a glint to be visible. The illumination is only
required for situations in which ambient illumination is dim. For accurate eye
modelling based on glints it might be necessary to add more and stronger
LEDs.

4.1 Safety considerations

Look! Blickschulungsbrille bears the CE mark and Look! ET UG (haftungs-
beschrankt) declares conformity with the relevant regulations:

1. NIR illumination is classified as safe for continuous exposure following
IEC/EN 62471: 2008 Photobiological safety of lams and lamp systems.
The maximum intensity of the LEDs is stated as 1.6 mW/sR. We advise
to keep a distance of at least 1 cm between LEDs and eye. Undamaged
devices ensure an even larger distance through their geometry. Please
do not use damaged devices that may allow the LEDs to get closer to the
eye than intended. Broken camera arms can be repaired professionally
by us!

2. RoHS2 Directive 2002/95/EC
3. Electronics passed EMC/LVD tests following EN62368-1:2014+A11:2017
4. PA12 Nylon is safe for skin contact.

Look! Recording unit bears the CE mark, documentation on request.

5 API

Access to the APl is required in case you intend to remote control the Look!
recording software or mobile recording unit. It is also required to achieve
live gaze data access. It is not required for normal operation (i.e., recording
a video and gaze data). Users of the API are expected to have knowledge
in programming. The API interfaces are network based and programming
language agnostic.

Look offers three kinds of APIs:

« ATCP based API server that can remote control the eye-tracker. A client
can subscribe to topics such as real-time gaze data or status updates.
Recommended for most cases. An example client in python is available.

« AHTTP REST-based API well suited for controlling the eye-tracker via
http. It allows sending commands to the eye-tracker. No real-time
access to the data is possible. The Look! mobile recording unit utilizes
this interface. Access to the video is possible via the MJPG stream.

« A WebRTC Datachannel can be used when you transmit the video via
WebRTC. As the overhead is quite large, it is not recommended to use
this API in case you do not wish to access the video in real time.

5.1 Definitions

Scene camera the forward directed camera recording the scenery around the
user.

Eye camera one of the cameras directed at the user’s eye.

Gaze The 2D gaze pixel coordinate in the eye-tracker’s scene camera view.
GazeMapped The 2D gaze pixel coordinate mapped to an object of interest
(e.g., a screen).

This document assumes the Look! software to run locally on the device
that the APl access happens from. If this is not the case, you need to access
the correct device via its IP address and make sure port 80 of the device
running Look! is available and not used by another service. You can access
the Look! mobile recording unit via Wifi by its IP 10.0.0.1, or its DNS address
look.box.

The mobile recording unit provides a fully functional reference imple-
mentation of the APl in Javascript. Follow the instructions to work with the
recording unit to access its web interface.

5.2 License agreement

The software license agreement you consent with during installation of the
Look! software is also applicable when accessing it via the API. Specifically,
usage of the APl must not circumvent a valid license for usage of the Look!
Software.

The Look! Software and eye-tracking signal must not be used to drive
safety-critical applications. Look! ET UG (haftungsbeschrankt9 does not
make any guarantees with regard to reliability and accuracy of the gaze
signal in these conditions. Any kind of military use cases require separate
permission on a case-by-case base and are not covered by the standard
license.

53 TCP

The TCP client can identify the Look! Server via Zeroconf. Look! will offer the
service _lookapi._tcp.local. by default on port 7071. The actual port
number can be gained from the Zeroconf properties on the offered service.
Using Zeroconf is not required in case you know the IP address ad port on
which Look! is running.

I subject name | setthe subject name

i get the subject name

R start recording with the current subject

R subject name | startrecording after changing the subject name
r stop recording

C start calibration

c stop calibration

Y get the Look! version number

S subscribe to topic T [S,G,V,A]

s

T
T unsubscribe from topic T

subject name needs to contain at least 3 characters, followed by a space,
followed by another at least 3 characters.
T defines the topic name and can be chosen from:

+ Status - get eye-tracker status updates
+ Gaze - get live gaze data
* Video - get live video data

+ Analysis - get a gaze statistics report whenever one is produced

9

+ Broadcast - everyone gets them, no need to subscribe, not possible to
unsubscribe

You will not receive a response, but should receive a status update where
appropriate, if you previously subscribed to status updates. A gaze data
packet looks as following:

G 0.00 0.00
where G is the topic identifier, followed by two %.2f formatted x and y coordi-
nates of calibrated gaze in the eye-tracker’'s scene camera image.

5.4 HTTP

The Look! Software offers a HTTP GET based API that receives simple
commands and responds with JSON objects. This method can be used to
send commends to the device (record, calibrate, playback) as well as to query
its current state. The video stream can be received in real-time (with a certain
delay depending on the mode of transmission) as a MJPG stream.

Animplementation example of the API can be found inthe FlaskProtocol
interface. Implementing the defined functions can provide a fully functional
GUI interface to the eye-tracker.

The eye-tracking software offers the following functionality, which can be
requested via http://IP_ADDRESS/cmd?COMMAND_STRING (use 127.0.0.1
as IP_ADDRESS for a local connection). Where COMMAND_STRING is one
of:

+ c=status&a=get
Get eye-tracker status information

response: STATUSREPORT {"c": "status", "a": "report",

"p": {"subjectid": int, "recordingid": int, "tracker_mode":
"live’, 'replay’, 'analysis’, "calibration_state": "uncalibrated",
"calibrating”, "calibrated", "recording_state": bool,
"playback_state": "replay", "analysis", "playing_state":

bool}}

- c=rec&a=start
Start a new recording for the currently selected subject.
response: STATUSREPORT

* c=rec&a=stop
Stop a currently running recording.
response: STATUSREPORT

10

* c=rec&a=marker
Place a marker in the recording (e.g., for synchronization).
response: HTTP 200

* c=cal&a=start
Start capturing calibration samples.
response: STATUSREPORT

* c=cal&a=stop
Stop capturing calibration samples and apply the new
calibration from now on.
response: STATUSREPORT

+ c=sbhj&a=list
List all subjects currently in the database.
response: SUBJECTLIST {"c": "sbj", "a": "list", "p":
"id": int, "forename": str, "familyname": str]}

+ c=sbj&a=select
Select a subject name for the recording. The name needs
to contain at least 3 letters, followed by a whitespace,
followed by 3 more letters. In case the subject is not
found in the database, it will be created.
response: SUBJECTLIST

- c=status&a=seeksync
Position of the playback slider within a recorded video
stream.
response: {"c": "status", "a": "seeksync",
float}}

More undocumented functions are available, e.g. for recording playback
and analysis.

p": {"syncpos":

5.5 WebRTC

We also offer an WebRTC interface that uses h264 or VP9 encoded video
as well as a data channel to transfer commands. The http interface is
however usually easier to use.

1

6 Optional extension modules

6.1 Streaming via WebRTC and MJPG

When streaming via MJPG, a web server provides access to the MJPG
stream. An API allows to remote control the device. This way of stream-
ing is recommended. Performance requirements for video compression
are critical even for powerful systems and JPEG compression can often
be done in hardware. The Look! Recording unit utilizes this interface.

It is possible to configure the software to provide a WebRTC stream
of the video as well as a stream of the data. Please note that h264 or
VP9 video compression might put substantial additional load on the
recording device. In this configuration a WebRTC data channel can be
used to remote control the software.

7 Al training

You should never be required to retrain our gaze estimation model
during regular usage, yet we provide some information on the training
process here. The built-in domain-specific data augmentation allows
to perform training with relatively few recordings. For recording the
training data, we made participants look at the center of a calibration
marker. These can easily be detected in the scene camera image and
tuples of eye images and gaze targets in the scene camera image can
be acquired.

Other approaches abstract over the scene camera'’s calibration. We
chose to predict scene camera pixel coordinates directly as well as an
abstract representation of gaze direction relative to each eye camera’s
coordinate system. To achieve this, we decouple the gaze target pixel
coordinates in the scene cam image from the eye image embedding
generated by the neural network via a calibration network. That way
the important gaze embedding network can learn its own bottleneck
representation of a gaze orientation. All subject-specific parameters
can be distilled to a calibration embedding generated by a separate
neural network that is only used during training of the network. The
resulting regression network can backprophagate its loss to optimize
the embedding and the calibration network jointly.

The consequence of this gaze direction representation is that the device
requires a calibration. As we recommend a personal calibration any-
ways, both steps can simply be merged. The gaze estimate is adjusted

12

to the subject’s specific eye as well as to the specific scene camera'’s
intrinsics. We implemented a calibration procedure following the Cal-
ibMe approach. This calibration is applied on top of the neural network
gaze estimate. That way we achieve similar accuracy as when using
EyeRecToo, but the network is not as susceptible to losing track of the
pupil as the pupil detection methods employed in EyeRecToo are.

13

8 Demonstration of flexibility

Researchers are unlikely to fiddle around with their expensive eye-
tracking gear, cut off pieces, replace modules or change their hardware.
In this section we want to give an impression on how we utilize the
ability to build our own, relatively inexpensive eye-tracking devices as
well as the ability to easily modify them and what kinds of problems
such modifications could possibly solve.

8.1 Angle of the scene camera

When recording tasks where the participants have to manipulate some-
thing with their hands, many scene cameras reach the limits of their
field of view. We found some scene cameras not to cover that area
at all. Generally, gaze accuracy deteriorates towards that region (as
calibration is hard to perform, glints disappear on the sclera and camera
viewing angle on the pupil is extreme). For these recordings we found
it necessary to slightly tilt the scene camera of the Blickschulungsbrille
towards the ground. Doing so is relatively easy with the provided 3D
sketches. Additionally, we produced a variant with adjustable scene
camera angle (figure 4b).

8.2 Flexible eye cameras

Having arigid frame reduces mechanical wearing and makes the device
easy to use. With a fixed eye camera position deep learning based
methods can be trained on a smaller subset of images and a bad camera
adjustment becomes unlikely. However, the flexibility gained by being
able to move the eye cameras might be important in some cases. The
frame of habitual eyeglasses might be in the way, the negative effect
of eyelashes and dropping eyelids or reflections on eyeglasses can
be reduced or completely avoided by a good, user-specific camera
positioning. This can be achieved either by the use of multiple cameras,
an adjustable nose piece that preserves the geometry between eye and
scene cameras, or adjustable eye cameras.

To gain more flexibility in eye camera placement we replaced the con-
nector between the eye camera and the frame with a flexible aluminium
wire (Figure 4a). This setup allows for full freedom in the adjustment
of the eye cameras without joint mechanics limitations. That makes
finding a good camera position and orientation comparatively easy. We

14

found that the wire can withstand a reasonable number of readjust-
ments without breaking when tightly fixed to the eye camera with epoxy
and not bent too far in a single spot.

(a) Look! variant with flexible eye cam- (b) Look! variant with an acrylic diffuser
eras that can be adjusted to work well as illumination pattern as well as an ad-

with eyeglasses and the most variance justable scene camera to capture the
in head shape. hand action space.

Figure 4

8.3 Diffuse illumination

As of now, head-mounted eye-tracking devices mostly utilize direct
illumination via near-infrared LEDs. This wavelength is invisible to the
human eye, yet provides a relatively constant illumination of the eye
and therefore solid contrast between pupil, iris and sclera. Often the
resulting glints are used to construct a geometrical model of the eyeball
(or to compensate for device slippage), however current methods can
work without them and utilize the LEDs only as a source of illumination.

Less explored is the use of diffuse illumination, i.e., scattering the source
of light over a larger area. Doing so might reduce shadows due to
eyelashes and increase the ease of adjusting cameras and illumination
to individual eyes.

At first glance such an approach seems to make pupil detection even
harder. In our experiments we found that even edge based methods
perform similar for both approaches. We expect additional potential
of this approach when utilizing deep learning based gaze estimation
methods as similar illumination approaches are applied during cornea
topography mapping. It might be possible to build more accurate cornea

15

models by combining the illuminator projection over multiple eye orien-
tations. The curvature of the reflected illuminator bar could also be a
helpful indication of cornea shape that could potentially be utilized by
deep learning gaze estimation approaches. We did however not test
this.

8.4 Line scanning sensors

Besides cameras, which are expensive and energy hungry, photodiode
arrays are an interesting way to infer gaze locatio. Here, we demonstrate
how the Blickschulungsbrille frame can be modified to house three line-
scanning sensors (TSL1401CL), NIR-pass filters as well as their cabling.
We placed the line scanners diagonally in order to try to overcome the
accuracy issues of other photodiode based devices in vertical gaze
estimation.

We evaluated the device on 6 subjects. Two of them participated both
with and without eyeglasses, leading to 8 recordings that we consider
as separate subjects in the following. Gaze prediction was performed
with a fully connected neural network of 3 layers with 96/24/2 neurons
and an input vector dimension of 384 that contained the concatenated
readings of the three sensors. The network was trained on 20 calibration
points within 34° field of view range and evaluated on another 12 points.
A chin rest was used in order to fix the gaze targets relative to the
subject’'s head. Average gaze estimation error on the evaluation points
was 7.6° when trained on all subjects jointly. With networks trained
specifically for one subject, we reached a mean error of 3.4-12.0° (mean
6.3°). These results are preliminary and the number of subjects very
low, however they demonstrate the potential of similar approaches for
future generations of mobile eye-tracking devices.

16

	Introduction
	Gaze estimation
	Calibration
	Calibration Markers
	Fitting methods

	Caveats

	Recommended metrics
	Frame
	Safety considerations

	API
	Definitions
	License agreement
	TCP
	HTTP
	WebRTC

	Optional extension modules
	Streaming via WebRTC and MJPG

	AI training
	Demonstration of flexibility
	Angle of the scene camera
	Flexible eye cameras
	Diffuse illumination
	Line scanning sensors

